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III. PROJECTILE MOTION 

Three cases are considered: PI, the projectile is 
accelerated in the + x direction for explosive con­
figuration EI with b > a; P2, the projectile is ac­
celerated in the - x direction for explosive configurat­
tion E1 with b < 0; P3, the projectile is accelerated 
in the +x direction for explosive configuration E2 
with b > a. For 'Y = 3 Eg. (J) can be written 

y' = ± 8Q(c/D)(u/D - y')2 (7) 

where y = s/a, z = Dt/a, Q = 2KpoAa/9m, and 
y' == dy/dz. Initial conditions are y = Yo, y' = 0 at 
z = zoo The three cases are distinguished by the 
expressions for u and c, given in the previous section. 

A. Case PI, b > a 

The projectile path is the dotted curve bH in Figure 1. 
Substituting Egs. (3) into (7) with x = s yields the 
equation to be solved for y: 

y. = Q[Y/z - (y - l)/(z - 1)] 
(8) 

[y/z + (y - l)/(z - 1) -2y')2 

Motion of the projectile lies entirely within Region II 
since u > 0 for all t > a/D. Moreover the acceleration 
is never negative: u > ds/dt initially and the difference 
diminishes as the projectile accelerates and the veloCity 
of its local environment changes. When u = ds/dt, 
the projectile is in a region of constant particle velocity 
with no forces acting on it, so it will continue in that 
state indefinitely. 

Eq. (8) has been integrated numerically for various 
values of b/a > 0 and for various Q. The results are 
shown in Figures 5 and 6 and in Table 1. The terminal 
velocity is taken to be the last value obtained in the 
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Trajectory and velocity of projectile for case PI; b = 1.5a, 
Q = 1.0. 
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Terminal velocities of explosively accelerated projectiles. Initial 
positions: PI and P3, b/a = 1.1; P2, b/a = -.01. 

numerical integration, usually at z > 10.0. The effect 
of varying Yo is illustrated in Table 1. There is an 
appreciable increase of final velocity with Yo, the 
terminal velocity increasing as Yo increases and the 
cbange being greater for small Q than for large. 
As Yo approaches unity Eq. (7) becomes meaningless 
because it ignores the finite size of the object accele­
rated; it also becomes singular. 

TABLE I 

TERMINAL VELOCITIES OF EXPLOSrvELY ACCELERATED PROJECTILES 

Yo = xo/a = -.01 FOR P2. Voo = D(dy/dz)z=oo 

Pl,P3 

Q xo/a PI 

.01 

.05 

.10 

1.0 

10.0 

100.0 

I.l 

1.5 

1.5 

1.1 

1.5 

1.01 

1.1 

1.5 

1.1 

1.5 

1.1 

1.5 

.00587 

.00633 

.0292 

.0530 

.0572 

.261 

.284 

.299 

.632 

.649 

.848 

.858 

e 

P3 P2 PI P2 P3 

.0\09 .00503 1.09 .0015 1.06 

.0884 .0448 

.338 .220 

.351 

.632 .408 

.848 .480 

.989 .194 .766 

.632 .408 .124 

.268 .808 .267 

.103 1.50 .104 
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Trajectories for all values of Q listed in Table I are 
similar to.that shown in Figure 5, except that the final 
velocity is approached more rapidly for larger Q. 
In each case the trajectory is asymptotic to a straight 
line, y = e + Yro 'z, where Yro ' is the asymptotic 
value of dyjdz. Terminal velocities for Yo = 0.0 are 
plotted as curve PI in Figure 6; values of e are given 
in Table I. 

B. Case P2 

The projectile path is the dotted curve JK of Figure 1. 
The equation of motion in Region I is obtained by 
substituting Eqs. (2) into Eq. (7). Defining y and z as 
before yields: 

mum in e for P3, Table I. For Q ~ 1.0, the projectile 
passes into IV and V; for Q ~ 10 it remains in II. 
This possibility can be inferred from Figure 4. Values 
of y and z can be transformed to (u, c) pairs and plotted 
to yield the curve cvq for Q = 10. Physically, this 
occurs because the particle first enters Region II where 
u = D and p = 0, experiencing little acceleration. 
As time passes, p increases and u decreases but is still 
much larger than y. Then as time increases still more, 
p begins to decrease because the detonation gases 
have blown past the particle or are traveling backward. 
Moreover u -t v so the acceleration is doubly-dimi­
nished. At the point q in Figure 4 the projectile has 
reached its terminal velocity, equal to the value of u 
at q. The form of this curve suggests that it would be 

y' = - Q(y/z + I/2)(y/z - 1/2 - 2y')2 (9) useful for estimating Yro '· 

Eq. (8) with a change of sign still applies in Region 
II. The projectile starts out in Region I and remains 
there so long as (y - I)/(z - 1) < -1/2. When 
(y - I)/(z - 1) > -1/2, Eq. (9) applies. When the 
projectile crosses the boundary between I and II, 
y and y' are continuous. Initial conditions are y = bfa, 
y' = 0 at z = 2b/a, b < O. Terminal velocities are 
shown in Figure 6 and Table I. 

C. Case P3 

The projectile path is the dotted curve bJK of 
Figure 3. Eq. (8) is the equation of motion in Region II. 
In Region IV: 

y' = Q[1/2 - (y - l)/(z - 1)] 
(10) 

[1/2 + (y - I)/(z - 1) - 2y']2. 

In Region V: 

y' = 8Q[Y/(z - 1) - y']2/(z - 1) (11) 

Terminal velocities obtained from numerical integra­
tion are shown in Figure 6 and Table I. The transition 
from Region II to Region IV occurs when y/z = 1/2; 
that from IV to V when (y + I)/(z - 1) = 1/2. When 
Q is large the projectile may not pass into Region IV 
at all, or may pass into it at such a late time that the 
event is no longer of interest or significance so far as 
its final velocity is concerned. It is this division of 
projectiles according to Q which produces the mini-

IV. DISCUSSION 

General features of the results are shown in Figure 6. 
If one seeks maximum velocity, the projectile should 
be placed ahead of the explosive: cases PI and P3. 
At lower velocities a rigid backing gives some ad­
ditional impulse to the projectile, but, in each case 
calculated, is less effective than doubling the explosive 
thickness with no backing. 

TABLE II 

TERMINAL VELOCITY OF 200 MICRON SPHERE ACCELERATED BY 

EXPLOSIVE CYLINDER WITH L/d = 3; d == a. Q = a/3Od 

Explosive 
a,em Q v/D v m/sec mass 

1.7 .35 3100 3.8 gm 

10 17 .68 6000 8.5 lb 

100 170 .89 7800 4.25 t 

Detonation velocity = 8800 m/sec 

The significance of the results can be better realized 
if we relate them to a particular experiment. Suppose 
a steel sphere of 200 microns diameter is to be accela­
rated by an explosive cylinder for which length/dia­
meter equals three. Assume that the effective thickness 
of the equivalent slab is one diameter. Then the 
relation between explosive mass and terminal velocity 
is as shown in Table II. This shows clearly that terminal 
velocity increases so slowly with explosive mass that 


